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ABSTRACT 

This work shows how to use inverted pendulum hardware in the teaching of intelligent control 

techniques. The concepts of a fuzzy logic based controller are applied on an inverted pendulum. The 

design process is explained in detail, offering a practical guide for the reproduction of both the 

experiment and simulation. Last but not least, the results are commented and the performance 

achieved with this controller is compared to that of the original one, which was delivered with the 

hardware. This work also suggests future developments for new undergraduate teams. 
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INTRODUCTION 
 

This undergraduate project was carried 

out by two students of the CEFET-RJ Institute 

of Technology as a partial requirement for the 

Bachelor Degree in Control and Automation 

Engineering (LIMA; BELARMINDO, 2011). 

The motivation this teaching experience 

consists of using the inverted pendulum 

hardware to demonstrate the limitations of 

mathematical modeling and the application of 

robust intelligent control techniques to a 

complex system. 

The inverted pendulum is an inherently 

unstable mechanical system, constituting a 

benchmark for the study of many control 

techniques. The dynamics of an inverted 

pendulum is applicable to more complex 

systems like heavy rocket vertical stabilization 

at the beginning of the launch phase, 

skyscrapers oscillation control, walking robots, 

biomechanics and many others (BLOCK; 

ÄSTRÖM; SPONG, 2007). 

The experimental setup consists of a High 

Fidelity Linear Cart, HFLC, developed by 
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Quanser (QUANSER, 2008). This device 

consists of an inverted pendulum assembled on 

a cart. The HFLC has a solid aluminum cart 

driven by a 400W brushless DC motor, which 

is connected by pinion and rack to a 0.8m rail, 

therefore eliminating slippage and belt 

stretching usually found in belt transmission 

systems. The cart’s position with respect to the 

rail is measured by a high precision encoder.  

 
Figure 1 – Inverted pendulum HFLC Quanser 

 
Source: Quanser, 2008.  
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As a result, this system is able to deliver 

high accuracy, speed, acceleration, and 

excellent repeatability. The cart, pendulum, and 

part of the rail can be seen in Figure 1. 

When the Inverted Pendulum HFLC was 

first put into operation, some problems were 

detected at the swing-up phase. At each time the 

system was turned on, the swing-up controller 

caused the car to hit the limit switches at the rail 

tips, therefore interrupting the operation. In this 

way, system behavior turns out to be 

unpredictable.  

The reason for this abnormal behavior 

was found to be in the swing-up controller 

originally adopted at the HFLC design, which 

was based on an energy control approach 

proposed by Furuta (BLOCK; ÄSTRÖM; 

SPONG, 2007). This technique was based on 

hardware called rotational inverted pendulum 

as shown in Figure 2, which differs 

considerably from the linear cart based inverted 

pendulum as shown in Figure 1. 
 

Figure 2 – Rotational inverted pendulum 

 
Source: elaborated by the authors. 

 

In the rotational pendulum, as shown in 

Figure 2, the horizontal bar can turn indefinitely 

around the vertical axis reaching any value of 

𝜃1. 

The Furuta’s swing-up control applied to 

HFLC design takes into account only two 

inputs, 𝜃 and �̇�, and one output, in this case, the 

current 𝑢  applied to the car motor. The cart 

position along the rail was not taken into 

account, which leads to collision against the rail 

limits. 

In the present work, the inverted 

pendulum has its pivot fixed on a cart, which 

moves along a straight horizontal rail, being the 

longitudinal position control of the cart over a 

limited rack length of paramount importance. In 

this way, the swing-up algorithm adopted by 

Furuta doesn`t apply to the Quanser design, 

whose cart motion is limited by a rail with 0.8m 

length. 

 

THE INVERTED PENDULUM 

DYNAMICS 
 

The pendulum parameters 
 

According to the User Manual 

(QUANSER, 2008) and to the Figure 3, the 

following parameters will be considered in the 

dynamic modelling of the inverted pendulum: 

𝑥, position of the cart; 

𝜃, angle of the pendulum; 

𝑀𝑝 = 0.23𝑘𝑔, mass of the pendulum; 

𝑀𝑐 = 3.22𝑘𝑔, mass of the cart; 

𝑙𝑝 = 0.3302𝑚 , distance between the 

pendulum's pivot and its center of mass 𝐺; 

𝐿𝑝 = 0.6413𝑚, pendulum length; 

𝐵𝑝 = 2.40(10−3)𝑁𝑚𝑠/𝑟𝑎𝑑, pendulum's 

pivot damping coefficient. 

 
Figure 3 – Inverted pendulum generalized 

coordinates 

 
Source: elaborated by the authors. 
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Dynamic model equations 
 

The derivation of the inverted pendulum 

dynamics is carried out according to the 

Lagrangian Theorem (MERIAM, 1966) shown 

in equation 1, 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞�̇�
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖  (1) 

 

where: 

𝐿 = 𝑇 − 𝑉  is the difference 

between kinetic T  and the potential 

energy V; 

𝑞𝑖 is the 𝑖𝑡ℎ generalized coordinate; 

and 

𝑄𝑖  is the 𝑖𝑡ℎ  torque or force input 

related to a given coordinate. 

 

According to Figure 3, the generalized 

coordinates are 𝑞1 = 𝑥  and 𝑞2 = 𝜃 . The 

generalized forces are 𝑄1 = 𝐹  applied to the 

cart, and the torque 𝑄2 = −𝐵𝑝�̇�  acting at the 

pendulum pivot where 𝐵𝑝  is the damping 

coefficient. 

The speed of the pendulum center of 

gravity is given by Equation (4). 

 

𝑉𝐺⃗⃗⃗⃗  ⃗ =  𝑉𝐴⃗⃗⃗⃗  ⃗ + �̇��̂� × 𝑙𝑃(𝑠𝑖𝑛𝜃𝑖̂ − 𝑐𝑜𝑠 𝜃𝑗̂) (2) 

𝑉𝐴⃗⃗⃗⃗  ⃗ = �̇�𝑖̂ (3) 

𝑉𝐺⃗⃗⃗⃗  ⃗ = [�̇��̇�𝑙𝑝 cos 𝜃]𝑖̂ + �̇�𝑙𝑝 sin 𝜃 𝑗̂ (4) 

 

where 𝑙𝑝 is the distance between the pivot and 

the pendulum’s center of mass.  

The potential energy 𝑉 of the system is 

described as follows: 

 

𝑉 = −𝑀𝑝𝑔𝑙𝑝 cos 𝜃 (5) 

 

The kinetic energy of the system is 

described by: 

 

𝑇 =
1

2
𝑀𝑝𝑉𝐺

2 +
1

2
𝐽𝑝𝜃

2 +
1

2
𝑀𝑐�̇�

2 (6) 

 

where: 𝑀𝑝 is the pendulum’s mass; 𝐽𝑝 is the 

pendulum’s barycentric moment of inertia; and 

𝑀𝑐 is the cart’s mass. 

The substitution of equation (4) in (6) 

leads to (7) 

 

𝑇 =
1

2
[𝑀𝑝 + 𝑀𝑐] �̇�

2 + 𝑀𝑝�̇��̇�𝑙𝑝 cos 𝜃 +
1

2
[𝑀𝑝𝑙𝑝

2 + 𝐽𝑝] �̇�
2 (7) 

 

The Lagrangian 𝐿 of the system is 

denoted by, 

 

𝐿 = 𝑇 − 𝑉 (8) 

𝐿 =
1

2
[𝑀𝑝 + 𝑀𝑐]�̇�

2 + 𝑀𝑝�̇��̇�𝑙𝑝 cos 𝜃 +
1

2
[𝑀𝑝𝑙𝑝

2 + 𝐽𝑝]�̇�
2 + 𝑀𝑝𝑔𝑙𝑝 cos 𝜃 (9) 

 

Deriving the terms of Equation (1) with 

respect to the first generalized variable 𝑥, as 

follows, 

 
𝜕𝐿

𝜕𝑥
= 0 (10) 

𝜕𝐿

𝜕�̇�
= [𝑀𝑝 + 𝑀𝑐]�̇� + 𝑀𝑝�̇�𝑙𝑝 cos 𝜃 (11) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) = [𝑀𝑝 + 𝑀𝑐]�̈� + 𝑀𝑝𝐿𝑝�̈� cos 𝜃 −

𝑀𝑝𝑙𝑝 sin 𝜃 �̇�2 (12) 

 

Substituting (10), (11), and (12) in (1) 

follows, 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
= 𝐹 (13) 

[𝑀𝑝 + 𝑀𝑐]�̈� + 𝑀𝑝𝑙𝑝�̈� cos 𝜃 −

𝑀𝑝𝑙𝑝 sin 𝜃 �̈�2 = 𝐹 (14) 

 

With respect to the second generalized 

variable 𝜃 follows, 

 
𝜕𝐿

𝜕𝜃
= −𝑀𝑝�̇��̇�𝑙𝑝 sin𝜃 − 𝑀𝑝𝑔𝑙𝑝 sin 𝜃 (15) 

= −𝑀𝑝𝑙𝑝 sin 𝜃 [�̇��̇� + 𝑔] (16) 
𝜕𝐿

𝜕�̇�
= 𝑀𝑝�̇�𝑙𝑝 cos 𝜃 + [𝑀𝑝𝑙𝑝

2 + 𝐽𝑝]�̈� (17) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) = 𝑀𝑝�̈�𝑙𝑝 cos 𝜃 −

𝑀𝑝𝑙𝑝�̇��̇� sin 𝜃 + [𝑀𝑝𝑙𝑝
2 + 𝐽𝑝]�̈� (18) 

 

Substituting (16), (17), and (18) in (1) 

follows, 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= −𝐵𝑝�̇� (19) 

𝑀𝑝�̈�𝑙𝑝 cos 𝜃 − 𝑀𝑝𝑙𝑝�̇��̇� sin 𝜃 +  

[𝑀𝑝𝑙𝑝
2 + 𝐽𝑝]�̈� + 𝑀𝑝𝑙𝑝�̇� sin 𝜃 +  

𝑀𝑝𝑔𝑙𝑝 sin 𝜃 = −𝐵𝑝�̇� (20) 
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so that the following differential equations 

describe the inverted pendulum dynamics, 

 

[𝑀𝑝 + 𝑀𝑐]�̈� + 𝑀𝑝𝑙𝑝 cos 𝜃 �̈� =

𝑀𝑝𝑙𝑝 sin 𝜃 �̇�2 + 𝐹 (21) 

𝑀𝑝𝑙𝑝 cos 𝜃 �̈� + [𝑀𝑝𝑙𝑝
2 + 𝐽𝑝]�̈� =

−𝑀𝑝𝑔𝑙𝑝 sin 𝜃 − 𝐵𝑝�̇� (22) 

 

The equations (21) and (22) are then 

expressed in state space form, 

 

[
�̈�
�̈�
] = [

(𝑀𝑝 + 𝑀𝑐) (𝑀𝑝𝑙𝑝 cos 𝜃)

(𝑀𝑝𝑙𝑝 cos 𝜃) (𝑀𝑝𝑙𝑝
2 + 𝐽𝑝)

]

−1

  

 [
(𝑀𝑝𝑙𝑝 sin 𝜃 �̇�2 + 𝐹)

(−𝑀𝑝𝑙𝑝𝑔 sin𝜃 − 𝐵𝑝�̇�)
] (23) 

 

THE FUZZY CONTROLLER 
 

Control Architecture 
 

The complete control of an inverted 

pendulum usually requires three steps: 

 

• the swing-up control to invert the 

pendulum position upwards; 

• the position control to keep the 

pendulum upward and inverted; 

and 

• the transition control to switch 

between swing-up and controlled 

position. 

 

The swing-up phase consists of moving 

the pendulum bar upwards from a rest 

condition, without applying torque directly at 

its pivot. Moving the cart to right and left causes 

the bar to oscillate with increasing amplitude, 

generating the swing motion. The cart, 

therefore, excites the pendulum at its natural 

frequency, consequently raising its mechanical 

energy. The diagram at Figure 4 illustrates this 

condition.  

 
 

 

 

 

 

 

Figure 4 – Inverted pendulum system motion 

 
Source: elaborated by the authors. 

 

The heuristic fuzzy swing-up design 
 

The first approach to design a fuzzy 

controller consists in replicating the behavior of 

a human operator by creating a set of rules that 

reproduces his or her control actions, and this 

procedure was followed in this work. 

The pendulum swing-up was performed 

many times by hand until this task was 

successfully accomplished, thus establishing 

the following steps: 

 

• The system begins at rest with the 

cart at rail`s center and the 

pendulum pointing downwards at 

zero angle, as shown in Figure 5. 

• With this first move to the left, in 

this case, the pendulum begins its 

swing. 

• When the bar comes again to zero 

angle, its rotation is clockwise and 

the cart then moves to the right of 

the rail, avoiding impacting at the 

rail limit. In this way, the bar 

swing amplitude increases. This 

sequence is shown in Figure 6. 

• Once the car reaches the right end 

position, it stops until the 

pendulum reaches zero angle and 

counterclockwise rotation. Once 

this condition is reached, the car 

moves once more to the left end, 

thus increasing the swing 

amplitude and mechanical energy 

of the bar, as shown in Figure 7. 
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Figure 5 – First cart motion 

 
Source: elaborated by the authors. 

 
Figure 6 – Second cart motion 

 

 
Source: elaborated by the authors. 

 
Figure 7 – Third cart motion 

 
Source: elaborated by the authors. 

 

The procedure above described is 

repeated until the angle between the pendulum 

and vertical is equal to or less than five degrees. 

At this moment the system switches for 

inverted pendulum position control, which 

assumes the command of cart motion. This 

knowledge will be translated into a set of rules, 

and for each variable of interest, a universe of 

discourse with fuzzy membership functions 

will also be developed. 

Based on the above heuristics, the 

following membership functions for the input 

variables were established: 

• Angle 𝜃 Figure 8: 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Angle 𝜽 membership functions 

 
Source: elaborated by the authors. 

 

For the input 𝜃  there are three 

membership functions as shown in Figure 8: 

ANeg, trapezoidal for negative angles; AZero, 

triangular for angles smaller than five degrees; 

and APos, trapezoidal for positive angles. 

• Angular speed �̇� Figure 9 

 
Figure 9 – Angular speed �̇� membership functions 

 
Source: elaborated by the authors. 

 

For the input �̇� there are also three speed 

membership functions as shown in Figure 9: 

ANeg, trapezoidal for negative; AZero, 

triangular for small; and APos, trapezoidal for 

positive speeds. 

The membership functions of the output 

𝑥𝐶 used at the defuzzification phase are shown 

in Figure 10. 
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Figure 10 – Position 𝒙𝑪 membership functions 

 
Source: elaborated by the authors. 
 

Both membership functions are gaussian, 

but they could be triangular, being their peak 

values the most important feature. 

These variables and their respective 

membership functions are shown in Table 1. 

 
 

Table 1 – Fuzzy Controller Rules 

 
Source: elaborated by the authors. 

 

SIMULATION ENVIRONMENT 

 
Figure 11 shows the Simulink® block 

diagram for the swing up process.  The swing 

up control is implemented in four steps as 

shown: angle pendulum conversion in orange; 

fuzzy inference engine in blue; sigmoid 

function in green; and position control in red.  

 

 

Figure 11 – Pendulum Swing Up Fuzzy Control 

 
 Source: elaborated by the authors. 
 

The orange block in Figure 11, pendulum 

angle conversion, modifies the pendulum angle 

𝜃  so that the fuzzy inference engine can 

correctly interpret it. The angle conversion 

block was built so that it limits 𝜃 universe of 

discourse to the interval [−𝜋, 𝜋], otherwise, it 

should be [−∞,+∞] . The structure of the 

pendulum angle conversion block can be seen 

in Figure 12. 

Besides defining the angle 𝜃 universe of 

discourse, one can see in Figure 12 that this is 

not the only function of this block. It also makes 

𝜃  be always positive in the first and second 

quadrants at the interval [0, 𝜋], no matter how 

many turns it may have done until it reaches 

these quadrants. Figure 13 shows the pendulum 

at a positive quadrant. 
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Figure 12 –Pendulum Angle Conversion Block 

 
Source: elaborated by the authors. 

 
Figure 13 – Positive 1st and 2nd Quadrants 

 

 
Source: elaborated by the authors. 

 

When the pendulum is in the third or fourth 

quadrant, the algorithm brings its angle to the 

interval [−𝜋, 0], no matter how many turns it 

may have done. This can be shown in Figure 14. 

In this way, the Pendulum Angle 

Conversion Block ensures that no matter how 

many turns the pendulum may have done, its 

angle will be always in the interval [−𝜋, 𝜋] , 

thereby making it possible to establish the fuzzy 

rules.  
 

 

 

 

 

 

 

Figure 14 – Negative 3rd and 4th Quadrants 

 
Source: elaborated by the authors. 

 

As shown in Figure 11, the FIS Swing-Up 

blue block is a standard MatLab® called S-

Function, which constitutes the Fuzzy 

Inference System. It is developed for the: input 

variable fuzzification; rule application; and 

defuzzification of the rule output. 

The red block in Figure 11 is the cart 

position reference command for a proportional-

derivative (PD) control implemented by the 

manufacturer (QUANSER, 2008). The inputs 

are the position and speed errors, and the output 

𝑢 is the current applied to the HFLC cart motor. 

The only output of the fuzzy controller is 

the reference command for the cart position 

control. The Sigmoid function act as a smoother 

for the fuzzy output, therefore avoiding current 

peaks at the cart electric motor and ensuring a 

correct command following.  

After the swing-up phase, the system is 

switched for an LQR controller that keeps the 

pendulum in the inverted position, as soon as it 

is within a limit of plus or minus five degrees 

from the vertical. 

 

SIMULATION RESULTS 

 
In order to verify the performance of the 

fuzzy control, the non-linear model of the cart-

pendulum system according to Equation (23) is 

implemented in Simulink®. 
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Figure 15 shows the cart displacement 𝑥𝐶 

and the pendulum angle 𝜃 with respect to time. 

The fuzzy logic swing-up system controls the 

cart motion in the time interval [0  5.112𝑠) 
until the pendulum reaches its inverted position. 

From the instant 5.112𝑠 , the control system 

changes to the pendulum stability control mode, 

which keeps it always upright inverted. 

 
Figure 15 – Time plot of 𝒙𝒄 and 𝜽 

 
Source: elaborated by the authors. 

 

After the system simulation in the 

SimuLink® is completed, the next step consists 

of the Hardware-in-the-loop simulation (HILS) 

using the complete hardware of the Quanser 

HFLC (QUANSER, 2008). 

Figure 16 shows the cart motion and the 

pendulum angle during the experiment of 

simulation with the hardware in the loop. 

During the time interval [0  5.977)𝑠 the swing-

up fuzzy controller caused the pendulum to turn 

360 degrees before moving to the inverted 

position, after which it was stabilized in this 

state. 

The system did not behave as expected due 

to the following reasons: 

• the tuning of the fuzzy controller was 

based on a non-linear mathematical 

model, equation (23), that didn't include 

the actuator dynamics of the force 𝐹 

acting on the cart; 

• there isn't a base of rules to control the 

potential energy and angular speed �̇� of 

the pendulum, therefore avoiding the 

overshoot at the top position, 

nevertheless the system was able to 

perform the swing-up phase. 
 

Figure 16 – HILS - Time plot of 𝒙𝑪  and 𝜽 

 
Source: elaborated by the authors. 

 

CONCLUSION 

 
Educational goals achieved 

 
The use of an Inverted Pendulum System 

hardware enabled the following results to be 

attained by the team of students: 

 

• Inverted pendulum modelling. 

The team was able to deal with a complex 

electro-mechanical system applying the 

Lagrangian Theory (Eq. 1) to obtain the state-

space non-linear model (Eq. 23) that 

approximately describes the behavior of the 

system. 

 

• Actuator dynamics. 

The force 𝐹  acting on the HFLC System cart 

(QUANSER, 2008) is provided by a step motor 

connected to a gear train, which causes the 

trolley to move along a rack. Therefore, the step 
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motor dynamics, gear backlashes non-

linearities, and time delays were not taken into 

account by the team in the system modeling, 

contributing to the unexpected behavior in the 

closed-loop configuration. 

• Energy management. 

The team was able to recognize the need for a 

set of rules that deal with the potential energy 

$V$ of the system, according to equation (2), 

reducing the motion amplitude as the pendulum 

approaches the top position. 

 

• Intelligent control system. 

The team was able to learn and implement the 

fundamentals of Intelligent Control by applying 

the principles of the Fuzzy Logic Theory to 

complex hardware. The fuzzy rule base was 

developed by observation of a human operator 

performing the swing-up task by hand. 

 

• Fuzzy logic controller model based 

tuning. 

The swing-up fuzzy controller was tuned using 

a non-linear mathematical model in 

SimuLink®, what clearly shows how 

mathematical modeling limitations and errors 

affect the performance, addressing the need for 

robust control techniques to deal with modeling 

uncertainties, including an unmodelled 

actuator, and high-frequency dynamics. 

 

• Fuzzy Logic Control Robustness. 

Even though the mathematical modeling was 

not able to capture the actuator dynamics and 

the parametric uncertainty of the system, the 

students realized the robustness characteristics 

of the fuzzy logic controller, which was able to 

perform the swing-up motion. 

 

Future developments 
 

The teaching of Intelligent Control 

Systems subject will take full advantage of the 

inverted pendulum hardware by establishing 

the following educational goals for the 

students: 

• Improving the non-linear model by 

including the actuator dynamics, time-

delays, pinion and rack backlashes, and 

other nonlinearities; 

• Implementing additional rules to reduce 

the motion amplitude as the pendulum 

approaches the top position;  

• Substituting the Linear Quadratic 

Regulator that keeps the pendulum in its 

inverted position, by a set of fuzzy rules, 

so that students become able to 

implement a full fuzzy logic controller. 
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